

Oracle Application Express (APEX)
A Time and Motion Analysis Developing Applications
Using APEX versus Traditional Development Approaches

December 2020

THE DEVELOPMENT OF THIS WHITE PAPER WAS SPONSORED BY ORACLE. THE UNDERLYING
RESEARCH AND ANALYSIS WERE EXECUTED INDEPENDENTLY BY PIQUE SOLUTIONS.

795 Folsom Street, 1st Floor | San Francisco, CA 94107 | Tel.: 415.685.3392 | www.piquesolutions.com

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Contents

Executive Summary ... 1

Introduction ... 3

Approach and Methodology.. 6

Study Execution ... 12

Development in APEX .. 12

Interactive Grid on APEX... 12

Faceted Search on APEX ... 12

WBS ... 13

Development in ReactJS .. 13

ReactJS Development Environment Setup ... 13

JavaScript Express MySQL API Development .. 14

Interactive Grid on ReactJS ... 14

Faceted Search on ReactJS.. 15

Study Results.. 17

Data Collection .. 17

Analysis .. 18

Research Questions ... 18

Statistical Analysis ... 18

Summary.. 20

Conclusions .. 21

Appendices... 22

Oracle Application Express (APEX) is a registered trademark of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners.

Pique Solutions is a competitive research and market analysis firm supporting Fortune-500 technology
companies. Pique is based in San Francisco, California.

© 2020 Pique Solutions. All rights reserved.

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Executive Summary
Pique Solutions conducted a study comparing a no-/low-code application development approach with a
traditional JavaScript framework approach to seek the quantitative and qualitative differences in
developing two real-world application modules—interactive grid and faceted search. Specifically, we
compared development on Oracle Cloud Infrastructure using Oracle Application Express (APEX) with a
traditional approach using a JavaScript framework (ReactJS) while leveraging existing libraries and writing
code to produce comparable deliverables to the greatest extent possible.

Oracle APEX is a popular low-code development platform for rapidly building opportunistic and data-
driven enterprise applications. APEX, combined with Oracle Database, provides a fully integrated
environment to build, deploy, maintain, and monitor data-driven business applications that display well
on mobile and desktop devices.

React is an open-source JavaScript library for building user interfaces or their components. It is
maintained by Facebook by a community of individual developers and companies. React can be used as a
base in the development of single-page or mobile applications.

Using a time and motion methodology, we defined and broke down the development activities for both
environments in Oracle Cloud and tracked the time and the lines of code written for both application
modules. The developer who designed and executed the study is a professional developer with 25 years
of experience using a variety of development tools and languages but, by design, had no prior experience
with APEX.

Figure 1. Development Time Comparison between APEX and JavaScript Framework

Development Time Comparison (Hours)

35 Development time 29.4 27.15 30 with APEX is less than
25 3% of development
20 time with ReactJS;
15 nearly 40 times faster.
10

5 0.75 0.72
0

Interactive Grid Faceted Search

Oracle APEX JavaScript Framework (ReactJS)

The key points and findings from this study, as summarized in Figure 1, include the following:

 APEX is more than 38 times faster than using a JavaScript framework approach based on the
average of our two development projects: an interactive grid and a faceted search. This is largely
due to the out-of-the-box capabilities and features that are packaged with the APEX framework
versus what needs to be configured and developed by hand using ReactJS.

 From a context perspective, the application delivery time for APEX, including setup and module
development, took only 44 minutes versus 3.5 days using a JavaScript framework.

 Twenty times less code was required, on average, in the APEX applications scenarios versus
commensurate applications developed using a JavaScript framework.

© 2020 Pique Solutions. All rights reserved.
1

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

 In addition to the time and code benefits, APEX also was found to have numerous advanced
enterprise capabilities that are taken care of in its platform, compared with what a JavaScript
framework offers, such as security, concurrency control, reporting, save as capability, and very
large dataset handling.

 From a developer skillset perspective, we also found that more sophisticated developer skills are
required to architect and develop a code-based solution compared to architecting and developing
the same applications using APEX. The additional skills required for code-based development
include proficiency in researching code libraries, front-end user interface design elements,
manipulating data, and backend integration and APIs. Few developers possess all those skills.

 From a business perspective, the results of this study demonstrate that companies using APEX can
lower the cost of developing applications, get to market much faster, and leverage a wider pool of
developer resources to implement new capabilities.

© 2020 Pique Solutions. All rights reserved.
2

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Introduction
Professional developers rely on the availability of libraries, frameworks, and platforms that help them
bridge the gap between the customer’s requirements and the implementation specifics. Decisions made
by professional developers during conception, architecture, coding, and testing of an enterprise
application can have profound impacts on time, resources, and associated cost—otherwise known as the
iron triangle.

The time it takes to implement an enterprise application can be hampered or helped, in part, by the
libraries, frameworks, and platforms that developers select to complete their solution. As software
development has evolved over the past 25 years, it has created a dizzying spectrum of options spread
across a variety of categories. Should a project be based on a platform that allows for less coding but has
limited customization? Or should a project be designed to run on bare computing resources and allow the
ultimate flexibility in implementation? These are just two of the thousands of decisions that face today’s
project managers, software architects, code developers, testers, and operators.

The complexity of building an enterprise application has many dimensions of considerations that
overwhelm the process of prioritization and execution. Fortunately, the advances in areas such as open-
source projects and platform richness are making bigger strides to remove some of the limitations and
tradeoffs software professionals face. The decision to use no-/low-code versus traditional developer tools
is becoming less complicated as a result.

The focus of this study was to delineate the differences between the no-/low-code data analysis tools
offered by Oracle APEX and the ReactJS library used to build rich user experiences. At first glance this may
not seem like a fair comparison—no-/low-code versus code. Naturally, the ratio of code and time spent in
one is not equal to the other; however, the comparison is validated when one listens in on meetings with
software professionals debating the merits of these two distinctive paths.

APEX
There are a variety of choices when evaluating database-native extraction and visualization toolsets.
According to Oracle’s website, APEX is “a low-code development platform that enables you to build
scalable, secure enterprise apps, with world-class features, that can be deployed anywhere.” Oracle
claims developers can build an enterprise application significantly faster with far less code than they can
with traditional development practices. The declarative APEX solution coupled with default security and
inherent time savings appears to be aligned with the concerns of most product and project managers, and
the resulting application should align with customer expectations. A professional developer is naturally
tempted to evaluate the potential.

Creating an application is seemingly simple: Create an Oracle Cloud account and then an Oracle APEX
account; import the data to be visualized, manipulated, and analyzed; select a template to view the data
with; and voila. Without any prior knowledge of the APEX platform, nondevelopers can be up and running
with a visualization of their data.

Once the initial APEX application is built, a developer can access the APEX Integrated Development
Environment (IDE) to further add and customize the existing data views in a multitude of ways, from
selecting colors and fonts to incorporating complex JavaScript functions capable of interacting with every
element of the data manipulation and visualization. Additionally, Oracle has built APEX on top of Oracle
Cloud, which provides integrated security. APEX is also supported natively on other cloud providers such
as Amazon Web Services and can be set up on top of Oracle Database in on-premises environments. This
means the solution is native to the cloud and can be ported to other cloud providers and to on-premises
environments that support APEX-native solutions.

© 2020 Pique Solutions. All rights reserved.
3

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

What about the limitations and tradeoffs that come with any platform? In this study, not many were
discovered. Oracle’s incorporation of an IDE allows for instant customization using native JavaScript with a
rich set of objects to manipulate. Inclusion of default secure access is also provided, which eliminates the
mandatory third-party security integration. Some elements of the experience could be improved and are
noted later in this white paper.

ReactJS
Ever since JavaScript was released in its native format, open-source communities and private corporations
have developed a comprehensive ecosystem capable of integrating disparate database technologies,
message queueing, security providers, and every other public and private solution provider available. The
introduction of rich libraries—such as Angular, ReactJS, and Vue, to name a few—has transformed the
JavaScript language into an agile toolkit capable of achieving great results in a small timeframe. ReactJS is
supported by an immense community of contributors, is optimized for performance, and reduces the
need to manage bindings between objects by leveraging events and triggers to update virtual DOM
elements.

As with any solution, ReactJS does have limitations. There is a large emphasis on user interface navigation.
For most backend developers, this can be helpful because this area can be overlooked in the stack if they
specialize in data and API access. ReactJS can quickly bring data and API access into a web application that
can be further tailored to customer requirements. Once a professional learns how to leverage modules to
blend web navigation with programming logic, the simplicity of ReactJS is realized.

Platform versus Native Development
From a project manager’s perspective, the effect of reducing the skillset and time needed to deliver a
solution to a customer is attractive. From a professional developer’s perspective, the possibility of
limitations and tradeoffs inherent with any no-/low-code platform could reduce efficiency due to
unfamiliarity or a lack of integration with the other resources they intend to include to resolve technical
gaps. The two mindsets are diametrically opposed from the start.

Oracle APEX and ReactJS are not necessarily equals in terms of the skillset that can use them. A
professional developer, however, can learn APEX and then customize the default application with
JavaScript to increase features and functionality. Furthermore, a professional developer can mirror the
functionality of an APEX application and then continue to tailor the application. The point is that either
entry point, ReactJS or APEX, can be used to build an enterprise-grade application. This white paper helps
quantify the time and code savings if APEX is chosen to do the initial data ingestion and visualization bits
as opposed to coding this from scratch.

Roles and Responsibilities
A variety of roles are involved when developing enterprise-class software solutions. This study focused on
the perspective of the developer. Specifically, this white paper was designed based on the perspective of
a professional developer. Although there are other varieties of developers in the software community,
such as data scientists (using R to manipulate data sets for the purpose of analysis in the scientific
research community) and citizen developers (Microsoft’s Visual Basic used to code functionality into Excel
spreadsheets), we focused on professional developers with a high degree of coding experience and a
history of exposure to many different coding languages.

This white paper provides a quantitative analysis of Oracle APEX and ReactJS and includes a discussion of
the approach and methodology used, the execution of the comparison, results, and a conclusion. The
following section, on approach and methodology, includes detail regarding the problem statement, the
purpose of the study, research questions, the nature of the study, the method, and assumptions. After
the approach and methodology are discussed, the section on execution of the comparison includes a

© 2020 Pique Solutions. All rights reserved.
4

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

narrative on the implementation of the example applications. The following four high-level applications
were implemented:

 An interactive grid example using Oracle APEX
 An interactive grid example using ReactJS
 A faceted search example using Oracle APEX
 A faceted search example using ReactJS

The details of the execution of the comparison are discussed in the results of the study section. The last
section of this white paper is a conclusion summarizing the results.

© 2020 Pique Solutions. All rights reserved.
5

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Approach and Methodology
Problem Statement
Organizations that rely on software to create solutions make significant investments in new technology.
The right design, tools, and language are a few of the elements that can determine the profitability and
sustainability of software solutions. Each selection may have a significant impact on the iron triangle:
time, cost, and resources. Controlling the time, it takes to complete a task can have an impact on cost and
resource allocation. Reducing the time for a task can also lead to market disruption by creating a new
platform from which to build more complex and value-added services. The problem is that some
professional developers do not have an empirical way to compare the time and amount of code required
when using a platform versus a coding language to create software solutions.

Purpose of the Study
Claims have been made about the speed and efficiency of implementing certain features associated with
one coding language versus another. Oracle maintains that its low-code platform APEX can enable faster
development and deployment with far less hand-coding than traditional development methods require. If
such a claim is true, APEX may improve efficiency of labor, which improves reliability and repeatability
and, thus, may also improve project success. The purpose of this quantitative, time and motion study was
to test and record the time taken to execute the steps necessary to implement two different reporting
applications in two different coding environments—Oracle APEX and ReactJS.

Research Questions
Research Question 1: Is there a significant difference in the time required to build an interactive grid
application using APEX as compared with ReactJS?

 H01: There is no significant difference in the time required to build an interactive grid application
using APEX as compared with ReactJS.

 Ha1: There is a significant difference in the time required to build an interactive grid application
using APEX as compared with ReactJS.

Research Question 2: Is there a significant difference in the time required to build a faceted search
application using APEX as compared with ReactJS?

 H02: There is no significant difference in the time required to build a faceted search application
using APEX as compared with ReactJS.

 Ha2: There is a significant difference in the time required to build a faceted search application
using APEX as compared with ReactJS.

Nature of the Study
The nature of the study was time and motion, which was used to record the time required to complete
each task in a unit of work. A unit of work was represented in this study by each of the hypotheses, each
of which was broken down into subtasks using the work breakdown structure (WBS) technique. The data
collected on the elapsed time for each subtask was then summed and used to compare the differences
between the coding platforms.

© 2020 Pique Solutions. All rights reserved.
6

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Method
The study was designed and conducted to compare the relationship between developing applications in
two different ways. The first method of developing applications was with a no-/low-code approach (APEX)
from the perspective of a professional developer having no prior experience with APEX. The second
method of developing applications was with a traditional development language (ReactJS) using libraries
for common functions where feasible.

Both no-/low-code and traditional coding were analyzed for the time and lines of code necessary to be
feature complete. Feature completeness was determined by identifying all features available in the Oracle
APEX version of the example application to be written. For instance, to marshal all the features available
in the interactive grid example, a sample interactive grid application was created in APEX and then
analyzed for feature inclusion. After the feature set was recorded in a spreadsheet, the task of matching
(parity) began by coding the equivalent using ReactJS in combination with MySQL (database) and Okta
(access control).

The two application types, faceted search and interactive grid, were decomposed using the WBS
technique. Each WBS was loaded into a spreadsheet that was used to record the time required to
complete each task. Once the application was completed, the task breakdown structure was reviewed for
completeness and augmented to add or remove tasks, as necessary. The goal was to be as close to parity
between the two different coding environments as possible to give an accurate real-world depiction of
the time associated with each. Some features were excluded for purposes of objectivity.

The following is an example of a WBS for Research Question 2 (faceted search):

Prerequisites

1. Obtain/create/identify data taxonomy.
2. Sign up for APEX service or create ReactJS project.

Initializing Actions

1. Create empty virtual database and table based on identified data taxonomy (APEX or local file).
2. Populate database table contents to database table.
3. Create function(s) to read contents of database table (without filters for facets/constraints).
4. Create base UI (blank web page).
5. Create base UI containers for:

a. Page title
b. Facet/constraint selection
c. Results listing

6. Create function(s) to list contents of database table in UI (results listing container):
a. Create sort function.
b. Create pagination of results.

7. Render list of facets: Add to facet/constraint selection UI container.
8. Render list of constraints for facets:

a. Identify constraint ranges for currency/price, integers representing quantity, etc.
b. Add selectable constraint to facet/constraint selection UI container.

Recurring Actions

1. Update results page with constrained data.
2. Update breadcrumb with selected constraints.

© 2020 Pique Solutions. All rights reserved.
7

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Interactive Grid
According to Oracle, “An interactive grid presents users a set of data in a searchable, customizable report.
In an editable interactive grid, users can also add to, modify, and refresh the data set directly on the page.
Functionally, an interactive grid includes most customization capabilities available in interactive reports
plus the ability to rearrange the report interactively using the mouse.”

Creating an interactive grid is essentially componentizing common spreadsheet functionality in a way that
can be visualized and manipulated inside a webpage. Features to highlight rows, take action on specific
cells, apply filters, and execute mathematical functions are all possible using an interactive grid
application. The depth of features is only limited by one’s requirement specifications.

Figure 2. Oracle APEX Interactive Grid Example Application

Faceted Search
According to Oracle, “Faceted Search (or faceted navigation) is seen pretty often on the internet; typically
on shop or sales web sites. The end user can set filters using Facets on the left or upper side of the screen.
A facet shows possible values together with the occurrence count within the result set. After the end user
changed a facet, results, dependent facets and occurrence counts refresh immediately.”

Faceted search is found commonly on e-commerce shopping sites. Amazon, Etsy, and Home Depot
routinely use faceted search to help their customers efficiently narrow down selections for criteria such as
manufacturer name, price, quality, and many other associated metadata attributes. Faceted search
effectively combines multiple search criteria and quickly brings matching data into view.

Figure 3. Oracle APEX Faceted Search Example Application

© 2020 Pique Solutions. All rights reserved.
8

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Dataset
This study relied on the existence of a dataset capable of exercising the majority of features and functions
associated with an interactive grid and faceted search example application: The Movie Database (TMDb)
as represented on Kaggle. Columns included in the dataset are as follows:

Budget
Genre
Homepage
ID
Keywords
Original Language
Original Title
Overview
Popularity
Production Company
Release Date
Revenue
Runtime
Status
Tagline
Title
Vote Average
Vote Count

Some columns contained arrays of data such as Genre, Keywords, and Production Company. These fields
were removed from the dataset, as they would add unnecessary complexity to the creation of the
example applications on both platforms. Additionally, some records contained null values in certain cells
and were excluded from the dataset to accommodate non-null constraints on the database used for the
ReactJS example applications. It should be noted that the Oracle Autonomous Database used for this
study was capable of ingesting null data cells without errors.

TMDb contained a good mixture of character and numeric data types. The character types ranged from 2
to 1,500 characters. The numeric types ranged from 0 to 2.8 billion. The Oracle Autonomous Database
and the MySQL database used in this study were able to handle the character types and ranges associated
with each of the non-null cells.

© 2020 Pique Solutions. All rights reserved.
9

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Database
Oracle Autonomous Database is used to power the Oracle APEX product. There is an option to use an
external database connection, but that was outside the scope of this study. JavaScript is flexible and can
use any database technology provided that either a library exists to connect to it, or an API exists that can
be called using TCP or UDP protocols. In this study a MySQL database running inside a docker container,
was used to house the dataset and expose it using the Node.JS web application framework, Express, with
the MySQL middleware component library. A sample model was adapted to connect to the movie dataset
schema (tmdb_5000_movies) defined in MySQL.

Figure 4. movie_model.js—MySQL Database Pool Definition and Query

Figure 5. index.js—Express Implementation Using MySQL Pooled Connection
Component Model as Middleware

© 2020 Pique Solutions. All rights reserved.
10

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Containers—Docker and Kubernetes
In keeping with the state-of-the-art development practices available, this study was conducted using
Docker containers for all backend components (database: MySQL; database API: Express with MySQL
middleware). Docker containers were hosted on Oracle’s Container Engine for Kubernetes. A local
development environment was used to build the frontend component. The split between hosted off-
premises and local on-premises components was used to reduce the deployment time associated with
container-based development (e.g., building containers, pushing to a registry, restarting components).
Deployment time was deemed as overhead that would skew the results in this study, so it was removed
from consideration as a differentiating metric.

JavaScript Grid Library
It is common practice for professional developers to select open-source or licensed libraries for use in
their applications. One of the common elements used in creating an interactive grid and faceted search
application is the grid component. JavaScript has many grid components to choose from. For this study,
and to be at parity with APEX, ag-Grid was chosen. ag-Grid was one of the top results in a Google search
on “react interactive grid” (indication of popularity). Further investigation reflected, based on the
thorough documentation available, a rich set of features needed to duplicate all the identified features in
the APEX interactive grid and faceted search example applications.

JavaScript Security Library
Oracle APEX includes a secure access feature by default. To replicate this feature in ReactJS, and be at
parity with APEX, it was necessary to integrate with a third-party security provider. For the purpose of this
study, Okta was chosen because it is quick to obtain an account, configure, and integrate the necessary
components to implement security access for a JavaScript application.

Assumptions
The developer will become more proficient in the use of each coding platform over multiple executions of
the tasks performed; therefore, it is assumed that the time needed to learn and become familiar with the
nuances of either platform will become less of a factor in the time difference associated with coding the
application identified in the research questions. It is also assumed that a JavaScript grid and a third-party
security provider’s common libraries are available that can be used for both interactive grid and faceted
search tasks. Without the use of common libraries, it would be necessary to build them from scratch, but
that would not reflect a real-world experience and therefore was not part of this study. It is also assumed
that a suitable dataset is available that will exercise the features and functionality of both interactive grid
and faceted search tasks.

Data Analysis Plan
Based on the requisite feature set, Pique Solutions tracked the time taken to set up and configure the
environment, develop the core modules, and perform any additional customization required. For each
identified subtask, the time taken to complete the activity was recorded, as well as the number of lines of
code written. Upon completion of each example application, the information on time and lines of code
was summed and compared. For example, the interactive grid application was constructed declaratively in
Oracle APEX and written programmatically in ReactJS. Once completed, the time and lines of code
recorded for each instance of the interactive grid example application were summed. In the case of APEX,
because it required no coding, a feature to change the genre of specific rows of data was added to
establish a code baseline and some additional time to implement.

© 2020 Pique Solutions. All rights reserved.
11

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Study Execution
For the execution phase of this study, the approach taken was to create the APEX version of one of the
examples and then create the equivalent version in ReactJS. The first example to be built in APEX was
interactive grid. This was an arbitrary decision and is assumed to have no bearing on the time collection
metrics for any of the research questions posed.

Development in APEX
Interactive Grid on APEX
Creating the interactive grid example application in APEX required some setup subtasks such as creating
an Oracle Cloud account, creating an APEX account, launching the APEX service, naming a workspace,
adding credentials to the newly created workspace, and logging out of the administrative account. The
work of creating the interactive grid APEX application could then begin by logging into the newly created
workspace, creating an application from file, importing the movies database file, naming the application
(IG), and clicking create. This set of subtasks created a base APEX application with the movie database as
its data source. The last step in creating the interactive grid application on APEX was to add a report page
of type ‘interactive grid.’

Viewing the interactive grid application was as easy as selecting the IG page and clicking the Play button in
the IDE. After providing the credentials that were established during the setup of the APEX application,
the interactive grid application was displayed (see Appendix G).

A small amount of code was added to the APEX interactive grid application to change the Genre of a
movie from English to French and back again. The code was 93 lines in length and took 10 minutes to
implement. A detailed explanation of the code is found on the Oracle Apex blog. The equivalent function
was implemented in the ReactJS interactive grid example application; however, it took 7 lines of code and
10 minutes to implement. A more detailed explanation of the differences discovered is found in “Results,”
later in this white paper.

Overall, the process was straightforward and required no coding. It should be noted that logging into
Oracle Cloud and Oracle APEX required two different sets of credentials and became confusing at times
during the execution of this study. A federated login would be a better solution to avoid confusion. It was
also difficult to navigate to a direct link for APEX after subsequently logging into Oracle Cloud. An article
about APEX was listed on the homepage, but there was no link to the APEX service. An initial attempt to
use the service, without any previous knowledge, was challenging, as it was not clear that the CSV movie
metadata file could be used as the basis for an APEX application, instead of building an APEX application
shell and then importing a dataset. Only after viewing an Oracle-supplied video tutorial did the Create
Application from File option lead to completing the task of building the interactive grid application.

Faceted Search on APEX
Creating the faceted search example application in APEX also required setup subtasks such as creating an
Oracle Cloud account, creating an APEX account, launching the APEX service, naming a workspace, adding
credentials to the newly created workspace, and logging out of the administrative account. The work of
creating the faceted search APEX application could then begin by logging into the newly created
workspace, creating an application from file, importing the movies database file, naming the application
(FS), and clicking Create. This set of subtasks created a base APEX application with the movie database as
its data source. The last step in creating the faceted search application on APEX was to add a report page
of type ‘faceted search.’

© 2020 Pique Solutions. All rights reserved.
12

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Viewing the faceted search application was just as easy. Simply selecting the FS page and clicking the Play
button in the IDE brought up the faceted search page login screen. After being prompted for the
credentials established during the setup of the APEX application, the faceted search application was
displayed (see Appendix H).

WBS
With the two APEX example applications created, the feature set for each could be collected. Many of the
elements in the APEX examples were common, such as filtering, grid layout, menu items, and sorting. The
interactive grid example included a multitude of features that allowed for easy viewing and manipulation
of data, as well as the ability to chart, save, and export data for external use. Saving a report was a
particular highlight, as it allowed for collaboration in a multiuser access scenario. This was not
implemented in the ReactJS version of interactive grid because the significant work required was not
specific to the interactive grid and was part of a more comprehensive collaboration environment not in
scope for this study.

The WBS for an interactive grid informed the subtask execution steps (Appendix D) for the ReactJS-
equivalent interactive grid application, and the WBS for faceted search informed the subtask execution
steps (Appendix E) for the ReactJS-equivalent faceted search application.

Development in ReactJS
ReactJS Development Environment Setup
Building a state-of-the-art ReactJS application does not require cloud deployment; however, many new
development projects in the open-source community and enterprise realm do use Docker containers and
Kubernetes clusters. For the purpose of this study, we configured the MySQL database container (version
5.7) from Docker Hub’s official Docker images collection. We also built a JavaScript Express application
(MySQL API) in a Docker container. Both containers were deployed on the OKE environment. Connecting
to the MySQL database, containing the TMDb movies metadata, required accessing the JavaScript Express
application on port 3001 using JavaScript’s fetch function with the post, get, update, and delete methods.

Deploying Docker containers on a Kubernetes cluster required creating an Oracle Cloud account and
allocating a Kubernetes cluster in OKE. After the Kubernetes cluster was deployed, we configured our
local Kubernetes environment to use the OKE cluster. A few location and account-specific details were
marshaled from the OKE and Oracle Cloud administration pages to complete this task.

We pushed the containers to a remote registry so that the Kubernetes definition files could correctly
reference the MySQL and MySQL API images. We used the Oracle Cloud Infrastructure Registry (OCIR) for
our remote registry. Just as the OKE cluster required location and account-specific details, so did the OCIR
connection. A few test pushes of the MySQL container indicated the remote registry was configured and
operating properly.

We created config, secrets, storage, deployment, and service definitions for both MySQL and MySQL API
containers. After MySQL was deployed, we port-forwarded the service to the local development
environment, connected the MySQL client, created an empty database, and imported the TMDb movies
metadata into a schema. Some records caused errors because they contained null values in required
fields. Those records were removed (about 20), and the data import completed successfully.

The environment setup process required a total of 246 minutes with 365 lines of configuration to
complete. Some of the major time usage came from the following: waiting for the Oracle Kubernetes
cluster allocation (40 minutes), configuring the MySQL Docker container with an empty database (20
minutes) and importing clean data (30 minutes), learning how to configure access to the OCIR (20
minutes), and creation of the Docker and Kubernetes definition files for MySQL (22 minutes), the MySQL
API (26 minutes), and the IG or FS example application (40 minutes).

© 2020 Pique Solutions. All rights reserved.
13

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

JavaScript Express MySQL API Development
Building the interactive grid example application using ReactJS was achieved in 1,373 minutes (22.88
hours) with 1,592 lines of code. We created the database model using the JavaScript Express application
(MySQL API) to properly access the creation, reading, updating, and deletion (CRUD) of records in the
MySQL database. We leveraged a sample model used to access PostgreSQL as a template and adapted it
to use MySQL. The process of developing the MySQL API container, deployment, and validating the model
took 210 minutes and 136 lines of code.

Interactive Grid on ReactJS
Development of the interactive grid example application using ReactJS included a series of steps within a
few high-level coding categories, as follows: creating the ReactJS project, adding and configuring the ag-
Grid component, populating the ag-Grid with MySQL data, styling the application, creating menus for
feature access, adding dialogs for interactive features, and adding code to support features. Each of the
coding categories are detailed in this section.

Creating the ReactJS project involved the use of the create-react-app (Figure 6) environment. The
environment creation process builds a folder structure, installs all base libraries via package.json (npm),
and builds base ReactJS component files (index.js, App.js, App.css, and test-specific files). After 3 minutes,
we had a working ReactJS application shell that we would extend to build our interactive grid example
application.

Figure 6. Using create-react-app to Create a Base ReactJS Environment

Next, we researched, added, and configured our base grid component. For this study, we chose ag-Grid
because of its popularity and thorough documentation of features required to be at parity with the Oracle
APEX interactive grid application. We installed (npm), included, and implemented the ag-Grid library in
our App.js file in 70 minutes using 115 lines of code. Restarting the application (npm start) showed an
empty grid ready for data and configuration. The ag-Grid configuration code section was revisited several
times throughout the project development phase to modify and extend its capabilities. Additional time
was added to this category of subtasks as the study progressed and refactoring was necessary.

Once the empty ag-Grid was implemented in code, we started the process of ingesting data from our
populated MySQL database. A client-side import function was created based on examples found on the
ag-Grid documentation site. The creation and validation of the data ingestion took about 15 minutes and
5 lines of code to complete.

The user interface was considerably basic at this point and needed some care and feeding to be
equivalent to the APEX interactive grid example application we built. Styling the application took a total of
105 minutes and 532 lines of code. Of course, this was an iterative process relying on the native Safari
HTML inspection tools. It was necessary to revisit this category at various points throughout the
development process. We did our best to capture these refactor events to keep the time recording
accurate.

We created application, grid, header, and row menus based on examples in the ag-Grid component
documentation (Appendix K). We mimicked the APEX interactive grid naming convention of each menu
item and subitem. The process of developing the functionality for each of the items was completed in
subsequent steps.

© 2020 Pique Solutions. All rights reserved.
14

https://index.js

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Some modal dialogs were needed for contextual help (Appendix M), login (Appendix L), and fill. ReactJS
makes the process of adding dialogs simple. We were able to reuse the help text from the APEX
interactive grid example application as a placeholder because the time it would take to build a help
dialogue was not in scope for this study.

Finally, the ag-Grid component was styled and decorated with menu items and could be wired with the
features needed to compare equally with the APEX interactive grid example application we built. We
started with search, sort, hide, format, copy-to-clipboard, and moving columns. Many of these features
required code with accompanying ag-Grid configuration changes. More features were added such as
stretching/shrinking columns, data aggregation functions, single-row view, deleting and duplicating rows,
clearing and filling cells, and refreshing data and rows. The complete list of features implemented was
captured in the React JS Interactive Grid Example Application Task Tracking Worksheet (Appendix D).

Every feature found in the APEX interactive grid example application was matched except for saving
reports and multiple highlight policies. The ability to save reports would have required a multiuser
collaboration experience that was beyond the scope of this study. Multiple highlight policies should have
been achievable, but an unexpected effect of implementing the highlight feature was interference with
other features. We suspect the dynamic CSS changes negatively impacted the ag-Grid component styling
and, thus, we did not complete the multiple highlight policy development.

The final touch on the ReactJS interactive grid example application was the inclusion of the Genre change
buttons that were also included in the APEX interactive grid example application. The two buttons toggled
between English and French for selected records in the ag-Grid component. In ReactJS, this code took 10
minutes to implement and only 7 lines of code as compared to 93 lines of code in APEX.

The major difference in lines of code between ReactJS and APEX for nondefault features can possibly be
attributed to coding style and decisions made on API access at early stages of development. It is unknown,
however, if more coding is necessary in APEX to achieve equivalent results from ReactJS for additional
features. Future studies could be developed to investigate research questions surrounding additional
feature coding requirements.

Faceted Search on ReactJS
Development of the faceted search example application using ReactJS included a series of steps within a
few high-level coding categories, which were as follows: creating the ReactJS project, adding and
configuring the ag-Grid component, populating the ag-Grid with MySQL data, styling the application,
adding functional code, and adding code to support features. Each of the coding categories is detailed in
this section.

Creating the ReactJS project involved the use of the create-react-app (Figure 6) environment. The
environment creation process builds a folder structure, installs all base libraries via package.json (npm),
and builds base ReactJS component files (index.js, App.js, App.css, and test-specific files). After 3 minutes,
we had a working ReactJS application shell that we would extend to build our faceted search example
application.

We researched, added, and configured our base grid component. We chose ag-Grid because of its
popularity and thorough documentation of features required to be at parity with the APEX interactive grid
application. We installed (npm), included, and implemented the ag-Grid library in our App.js file in 70
minutes using 115 lines of code. Restarting the application (npm start) showed an empty grid ready for
data and configuration. The ag-Grid configuration code section was revisited several times throughout the
project development phase to modify and extend its capabilities. Additional time was added to this
category of subtasks as the study progressed and refactoring was necessary.

With a working, but empty, ag-Grid implementation, we started the process of ingesting data from our
populated MySQL database. We created a client-side import function based on examples found on the ag-

© 2020 Pique Solutions. All rights reserved.
15

https://index.js

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Grid documentation site. The creation and validation of the data ingestion took about 15 minutes and 5
lines of code to complete.

Next, we needed to style the ReactJS faceted search user interface to match the APEX faceted search
example application we built. Styling this application took more than double the interactive grid time with
a total of 235 minutes and 539 lines of code. The increase in time for styling was due to the dropdown,
hide, and show functionality required by the faceted search features. It was necessary to revisit this
category at various points throughout the development process.

Functional code was a major focus for the ReactJS faceted search example application. The functions
required to duplicate the APEX faceted search example application were as follows: map-reduce records
for collecting unique items (60 minutes and 100 lines of code) and item counts (60 minutes and 11
additional lines of code), distribution of numeric elements (60 minutes and 10 lines of code), filters for
column in arrays (30 minutes and 32 lines of code), and a generic filter feature (10 minutes and 20 lines of
code). Functional code was exposed to the user in the form of features.

Features for the ReactJS faceted search example application included the following: rendering the unique
items and item counts (140 minutes and 85 lines of code), creation of ‘show more’ and ‘show less’ based
on 5 or fewer items (105 minutes and 53 lines of code), naming and assigning of HTML facet items
dynamically (30 minutes and 4 lines of code), applying single text filter for columns from array (30 minutes
and 4 lines of code), applying multiple text filters for columns from array (90 minutes and 6 lines of code),
clearing filters for columns (75 minutes and 32 lines of code), applying single numerical filter for columns
from array (75 minutes and 43 lines of code), formatting for currency and commas (30 minutes and 46
lines of code), and implementing the recursive filtering logic required after an initial filter is selected (90
minutes and 20 lines of code).

It should be noted that we believed faceted search would require less time and code than interactive grid.
Many of the functions and features needed to implement faceted search required research and several
iterations to achieve. Familiarity with faceted search algorithms may have decreased the research or
iteration time; therefore, the resulting time for other developers may vary.

© 2020 Pique Solutions. All rights reserved.
16

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Study Results
The first part of this section includes information on data collection, and the second part contains a
narrative to explain the results using a statistical comparison chart organized by research question and
hypotheses.

Data Collection
The time and code required to implement two different reporting applications (interactive grid and
faceted search) were the focus of this study. For each of the example applications, data (passage of time)
was collected in regular intervals throughout the coding effort. Once coding was completed, the lines of
code were recorded for each subtask. Care was taken to reduce the number of blank and comment lines
in the lines of code count. Time and lines of code were recorded for the following:

 Oracle APEX Faceted Search example application (Appendix A)
 Oracle APEX Interactive Grid example application (Appendix B)
 ReactJS common setup and preparation (Appendix C)
 ReactJS Interactive Grid example application (Appendix D)
 ReactJS Faceted Search example application (Appendix E)

After collection was completed, a separate and combined summary chart was created to call out the
results of the high-level tasks represented by the research questions and hypotheses (Appendix F). Figure
7 presents the aggregate time and lines of code counts to build a comparison of effort needed to produce
APEX-equivalent applications.

Figure 7. Separate and Combined Summary Comparison of Time and Motion

interactive grid
APEX

JavaScript Framework
(ReactJS) APEX vs. JavaScript Framework

Time (min) Lines of Code Time (min) Lines of Code % faster % less code x faster x less code
Setup/Preparation 21 0 246 365 91% 100% 11.71
Module Development 14 0 1,373 1,592 99% 100% 98.07
Additional/Solution Development 10 93 10 7 0% -1229% 1.00 0.08
Totals 45 93 1,629 1,964 97% 95% 36.20 21.12
Totals (time in hours) 0.75 27.15

faceted search
APEX

JavaScript Framework
(ReactJS)

APEX vs. JavaScript Framework

Time (min) Lines of Code Time (min) Lines of Code % faster % less code x faster x less code
Setup/Preparation 21 0 246 365 91% 100% 11.71
Module Development 12 0 1,518 1,378 99% 100% 126.50
Additional/Solution Development 10 93 10 7 0% -1229% 1.00 0.08
Totals 43 93 1,764 1,743 98% 95% 41.02 18.74
Totals (time in hours) 0.72 29.40

combined development*
APEX

JavaScript Framework
(ReactJS) APEX vs. JavaScript Framework

Time (min) Lines of Code Time (min) Lines of Code % faster % less code x faster x less code
Setup/Preparation 21 0 246 365 91% 100% 11.71
Module Development - FS 12 0 1,518 1,378 99% 100% 126.50
Module Development - IG 14 0 1,373 1,592 99% 100% 98.07
Additional/Solution Development 10 93 10 7 0% -1229% 1.00 0.08
Totals 57 93 3,147 3,342 98% 97% 55.21 35.94
Totals (time in hours) 0.95 52.45

*If both modules would have been built in a single cycle.

© 2020 Pique Solutions. All rights reserved.
17

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Analysis
A time and lines of code summary chart was created using the summary of measurements taken, per
subtask, during each implementation exercise. All research questions were tested based on the null and
alternative hypotheses.

Research Questions
Research Question 1: Is there a significant difference in the time required to build an interactive grid
application using APEX as compared with ReactJS?

 H01: There is no significant difference in the time required to build an interactive grid application
using APEX as compared with ReactJS.

 Ha1: There is a significant difference in the time required to build an interactive grid application using
APEX as compared with ReactJS.

Research Question 2: Is there a significant difference in the time required to build a faceted search
application using APEX as compared with ReactJS?

 H02: There is no significant difference in the time required to build a faceted search application using
APEX as compared with ReactJS.

 Ha2: There is a significant difference in the time required to build a faceted search application using
APEX as compared with ReactJS.

Statistical Analysis
The first question was used to gauge the difference in the time required to build an interactive grid
application using APEX as compared with ReactJS. The time recorded to develop an APEX interactive grid
example application was 45 minutes (Figure 8): Preparing the APEX environment took 21 minutes,
creating the application using the APEX automated workflow took 14 minutes, and developing an
additional feature to toggle Genre between English and French in selected cells took 10 minutes. Total
lines of code implemented for the interactive grid solution on APEX was 93, and lines of code written per
minute was 2.06.

The same interactive grid solution built using ReactJS and MySQL took 1,629 minutes to create (Figure 8):
Preparing the ReactJS environment (Docker, Kubernetes, etc.) took 246 minutes, developing the main
application took 1,592 minutes, and developing an additional feature to toggle Genre between English
and French in selected cells took 10 minutes. Total lines of code implemented for the interactive grid
solution on ReactJS was 1,964, and lines of code written per minute was 1.21.

© 2020 Pique Solutions. All rights reserved.
18

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Figure 8. Difference in Time between APEX and ReactJS Interactive Grid Example Applications

M
in

ut
es

2,000

1,500

1,000

500

0
45

1,629

ReactJS (IG) Oracle APEX (IG)

Overall, the APEX interactive grid example application required 21.12 times less code and was 36.20 times
faster to build than the equivalent ReactJS interactive grid example application. Without
Additional/Solution Development (Figure 7), 1,957 more lines of code were required in ReactJS versus in
APEX. Based on the results of this experiment, the alternate hypothesis is confirmed. There is a significant
difference between the time required to build an interactive grid application using APEX as compared
with ReactJS.

The second question was used to gauge the difference in the time required to build a faceted search
application using APEX as compared with ReactJS. The time recorded to develop an APEX faceted search
example application was 43 minutes (Figure 9): Preparing the APEX environment took 21 minutes,
creating the application using the APEX automated workflow took 12 minutes, and developing an
additional feature to toggle Genre between English and French in selected cells took 10 minutes. Total
lines of code implemented for the interactive grid solution on ReactJS was 93, and lines of code written
per minute was 2.16.

The same faceted search solution built using ReactJS and MySQL took 1,764 minutes to create (Figure 9):
Preparing the ReactJS environment (Docker, Kubernetes, etc.) took 246 minutes, developing the main
application took 1,518 minutes, and developing an additional feature to toggle Genre between English
and French in selected cells took 10 minutes. Total lines of code implemented for the faceted search
solution on ReactJS was 1,743, and lines of code written per minute was 0.99. Without
Additional/Solution Development (Figure 7), 1,736 more lines of code were required in ReactJS versus in
APEX.

© 2020 Pique Solutions. All rights reserved.
19

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Figure 9. Difference in Time between APEX and ReactJS Faceted Search Example Applications

M
in

ut
es

2,000

1,500

1,000

500

0
43

1,764

ReactJS (FS) Oracle APEX (FS)

Overall, the APEX faceted search example application required 18.74 times less code and was 41.02 times
faster to build than the equivalent ReactJS faceted search example application. Based on the results of
this experiment, the alternate hypothesis is confirmed. There is a significant difference between the time
required to build a faceted search application using APEX as compared with ReactJS.

Summary
On average, the Oracle APEX example applications required 19.93 times less code and were 38.61 times
faster to build than their equivalent in ReactJS. It should be noted that features such as saving reports,
highlighting rows in interactive grid, and applying multiple numerical filters in faceted search were not
implemented in ReactJS due to scope inflation or bugs at the time of the study’s execution. APEX also
included features such as accessibility, right-to-left text, better performance for large datasets, and
multiuser scenarios such as saving and editing reports. The time and lines of code recorded for each
example application was deemed sufficient for the purposes of this study.

The following conclusion provides a discussion of the overall development experience for both APEX and
ReactJS and suggestions for future versions of this study.

© 2020 Pique Solutions. All rights reserved.
20

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Conclusions
Oracle’s claim that creating an application with the Oracle APEX platform dramatically reduces the
development time and lines of code was validated in this study. The average time is roughly 40 times less
and the average lines of code is 20 times less than when creating an application with a ReactJS
framework. This savings is substantial for those wanting to build applications that will support a very
mature set of features coupled with performance and multitenant collaboration. The free-tier
development model and the expedited application creation workflows (creating an application from the
data itself) are powerful reasons to consider the APEX platform for value-added solution development.

It should be noted that ag-Grid’s availability, and our decision to select it among its competitors, was a
major determiner of our outcome. If ag-Grid were not as feature-rich as it is, contained major defects, or
was not cost-effective, the study outcome would have been much different. Additionally, the skillset of
our professional developer was well rounded and capable of addressing feature parity in an agile fashion.
The skillset required to match APEX’s feature set was nontrivial and should not be overlooked as a factor
in this study. APEX is clearly suited for a wider range of professional developers and allows for lower cost
developer skillset options.

Oracle could improve its APEX federated login to let users remember one set of credentials instead of
two. Using one set of credentials to log in to Oracle Cloud and then another set to log in to Oracle APEX
was confusing and led to losing access, inadvertently, during the study execution. Federated login is one
area where Oracle could improve the APEX experience.

Future versions of this time and motion study could be expanded to take on larger projects (e.g., a
decision support system) to qualify the savings of time and lines of code for those applications requiring
nondefault features. The addition of nondefault features might expose a narrowing or widening of the
gaps discovered for time to develop or lines of code written. The additional code written to support a
nondefault function in Oracle APEX was equal in terms of the time to develop (10 minutes) but was 13.29
times more lines of code written when compared with ReactJS. The difference may be explained by the
difference in the API exposed by APEX and ag-Grid. Also, some features required fewer lines of code in
ReactJS because knowledge about the ag-Grid API was accumulated during the experiment that allowed
for reuse of code previously written to accomplish other features.

© 2020 Pique Solutions. All rights reserved.
21

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendices
Appendix A. Oracle APEX Faceted Search example application task tracking worksheet

Appendix B. Oracle APEX Interactive Grid example application task tracking worksheet

Appendix C. React JS common setup and preparation task tracking worksheet

Appendix D. React JS Interactive Grid example application task tracking worksheet

Appendix E. React JS Faceted Search example application task tracking worksheet

Appendix F. Comparison table of results for time and code

Appendix G. Oracle APEX Interactive Grid User Interface

Appendix H. Oracle APEX Faceted Search User Interface

Appendix I. ReactJS Interactive Grid User Interface

Appendix J. ReactJS Faceted Search User Interface

Appendix K. Application, grid, header, and row menus

Appendix L. Login Modal Dialog

Appendix M. Help Modal Dialog

Appendix N. Difference in Time for APEX Example Applications

Appendix O. Difference in Time for ReactJS Example Applications

Appendix P. Combined Difference in Time between APEX and ReactJS Example Applications

Appendix Q. Difference in Lines of Code for ReactJS Example Applications

Appendix R. Excerpt of code from Interactive Grid on ReactJS

Appendix S. Excerpt of code from Interactive Grid on APEX

© 2020 Pique Solutions. All rights reserved.
22

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix A. Oracle APEX Faceted Search Example Application Task Tracking Worksheet

Stage Task Sub Task Time to Complete
(Minutes) Lines of Code Written

Setup/preparation create Oracle cloud account personal info 2 0
Setup/preparation create Oracle cloud account financial info 3 0
Setup/preparation provision Autonomous Database configure 2 0
Setup/preparation provision Autonomous Database credentials 2 0
Setup/preparation provision Autonomous Database provision 5 0
Setup/preparation launch APEX launch APEX 3 0
Setup/preparation login to administration login to administration 1 0
Setup/preparation create workspace name workspace 1 0
Setup/preparation create workspace credentials 1 0
Setup/preparation

Module development

logout of administration

login to workspace

logout of administration
Total

login to workspace

1
21
1

0
0
0

Module development launch app builder new application 1 0
Module development launch app builder import database 4 0
Module development launch app builder name application 1 0
Module development launch app builder create application 2 0
Module development

Additional/Solution development

launch app builder

original_language code

add page - faceted search
Total

two buttons to toggle language from english to french, and french to english

3
12
10

0
0

93

Total 10 93

© 2020 Pique Solutions. All rights reserved.
23

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix B. Oracle APEX Interactive Grid Example Application Task Tracking Worksheet

© 2020 Pique Solutions. All rights reserved.
24

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix C. ReactJS Common Setup and Preparation Task Tracking Worksheet

Stage Activity Sub Activity
Time to

Complete
(Minutes)

Lines of
Code

Written
Setup/preparation Local environment install local Docker environment (kubernetes CLI) 10 0
Setup/preparation create Oracle cloud account personal info 2 0
Setup/preparation create Oracle cloud account financial info 3 0
Setup/preparation Oracle container cluster provisioned allocate kubernetes cluster 40 0
Setup/preparation Oracle container cluster provisioned configure local kubernetes CLI to connect to Oracle kubernetes cluster 10 0
Setup/preparation deploy database (MySQL) create config 2 10
Setup/preparation deploy database (MySQL) deploy config 1 0
Setup/preparation deploy database (MySQL) create storage 2 30
Setup/preparation deploy database (MySQL) deploy storage 1 0
Setup/preparation deploy database (MySQL) create deployment 2 30
Setup/preparation deploy database (MySQL) deploy deployment 1 0
Setup/preparation deploy database (MySQL) create service 2 12
Setup/preparation deploy database (MySQL) deploy service 1 0
Setup/preparation connect to MySQL port forward 10 1
Setup/preparation connect to MySQL install mysql client on local environment to connect to MySQL container 5 0
Setup/preparation create psql table Create empty virtual database and table based on identified data taxonomy 15 0

Setup/preparation data loading clean data (remove problematic records) 25 0
Setup/preparation data loading Populate database table contents to database table 5 0
Setup/preparation build container for node.js (interactive grid code) create secrets 2 15
Setup/preparation build container for node.js (interactive grid code) deploy secrets 1 0
Setup/preparation build container for node.js (interactive grid code) create config 2 13
Setup/preparation build container for node.js (interactive grid code) deploy config 1 0
Setup/preparation build container for node.js (interactive grid code) create deployment 2 35
Setup/preparation build container for node.js (interactive grid code) deploy deployment 1 0
Setup/preparation build container for node.js (interactive grid code) create service 2 16
Setup/preparation build container for node.js (interactive grid code) deploy service 1 0
Setup/preparation Docker config create interactive grid docker file 20 36
Setup/preparation Docker config create dockerignore file 5 5
Setup/preparation Docker config build docker file 3 0
Setup/preparation Docker config connect to Oracle cluster registry 20 0
Setup/preparation Docker config push docker build to Oracle cluster registry 4 0
Setup/preparation Docker config create build and deploy script for all components (IG App) 15 26
Setup/preparation Docker config build and deploy 4 0
Setup/preparation build container for API (abstract MySQL) create secrets 2 15
Setup/preparation build container for API (abstract MySQL) deploy secrets 1 0
Setup/preparation build container for API (abstract MySQL) create config 2 13
Setup/preparation build container for API (abstract MySQL) deploy config 1 0
Setup/preparation build container for API (abstract MySQL) create deployment 2 35
Setup/preparation build container for API (abstract MySQL) deploy deployment 1 0
Setup/preparation build container for API (abstract MySQL) create service 2 16
Setup/preparation build container for API (abstract MySQL) deploy service 1 0
Setup/preparation Docker config createAPI docker file 2 20
Setup/preparation Docker config create dockerignore file 2 11
Setup/preparation Docker config create build and deploy script for all components (API)

Total
10

246
26

365

© 2020 Pique Solutions. All rights reserved.
25

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix D. ReactJS Interactive Grid Example Application Task Tracking Worksheet
Highlighted rows show tasks that were not completed due to lack of support in underlying grid
framework.

© 2020 Pique Solutions. All rights reserved.
26

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix E. ReactJS Faceted Search Example Application Task Tracking Worksheet

Stage Activity Sub Activity
Time to

Complete
(Minutes)

Lines of
Code

Written
Module development API application create table model (service-side CRUD) 30 62
Module development API application create express app (expose table model via webservice) 30 74
Module development API application build and deploy API application on OKE 20

Module development API application
validate API for server-side CRUD (Create, Read, Update, Delete) functions - using
Postman 120

Module development API Application fix and redeploy API application 10
Module development nodejs application (faceted search code) file create React application (index.js) 3 1
Module development nodejs application (faceted search code) grid research and select nodejs grid library 30
Module development nodejs application (faceted search code) grid add ag-Grid nodejs library 10 35
Module development nodejs application (faceted search code) grid create basic grid in React 30 64
Module development nodejs application (faceted search code) database create client-side import function to read database content through API application 15 5
Module development nodejs application (faceted search code) style create index.css 90 450
Module development nodejs application (faceted search code) style create index.css - add side-by-side faceted selection 30 30
Module development nodejs application (faceted search code) style create index.css - add left side menu 40 30
Module development nodejs application (faceted search code) style create index.css - facet and heading format changes 60 15
Module development nodejs application (faceted search code) style create app.scss 15 14
Module development nodejs application (interactive grid code) grid implement pagination, pinned column, download, and chart feature 30 12
Module development nodejs application (faceted search code) function map reduce records for unique items per column 60 100
Module development nodejs application (faceted search code) function map reduce records for unique item counts 60 11
Module development nodejs application (faceted search code) feature render distinct (unique items) dynamically in html 140 85
Module development nodejs application (faceted search code) feature create 'show more' and 'show less' placeholders based on 5 (less/more) items 15 20
Module development nodejs application (faceted search code) function implement distribution of numeric elements 60 10
Module development nodejs application (faceted search code) feature show more items on click of "show more" 90 33
Module development nodejs application (faceted search code) feature naming of html items and assigning values dynamically 30 4
Module development nodejs application (faceted search code) function set filters for columns in array 30 32
Module development nodejs application (faceted search code) feature apply single text filter for columns from array 30 4
Module development nodejs application (faceted search code) feature apply multiple text filters for columns from array 90 6
Module development nodejs application (faceted search code) function implement security page placeholder 60 100
Module development nodejs application (faceted search code) function implement generic filter feature 10 20
Module development nodejs application (faceted search code) feature clear filters for columns 75 32
Module development nodejs application (faceted search code) function implement columns and filter feature 10 20
Module development nodejs application (faceted search code) feature apply single numerical filter for columns from array 75 43
Module development nodejs application (faceted search code) feature format for currency and commas 30 46

Module development nodejs application (faceted search code) apply multiple numerical filters for columns from array

not supported

Module development nodejs application (faceted search code) implement recursive filtering after intial filter is selected 90 20

Additional/Solution development original_language code
Total

two buttons to toggle language from english to french, and french to english
1518

10
1378

7

Total 10 7

© 2020 Pique Solutions. All rights reserved.
27

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix F. Comparison Table of Results for Time and Code

interactive grid
APEX

JavaScript Framework
(ReactJS) APEX vs. JavaScript Framework

Time (min) Lines of Code Time (min) Lines of Code % faster % less code x faster x less code
Setup/Preparation 21 0 246 365 91% 100% 11.71
Module Development 14 0 1,373 1,592 99% 100% 98.07
Additional/Solution Development 10 93 10 7 0% -1229% 1.00 0.08
Totals 45 93 1,629 1,964 97% 95% 36.20 21.12
Totals (time in hours) 0.75 27.15

faceted search
APEX

JavaScript Framework
(ReactJS)

APEX vs. JavaScript Framework

Time (min) Lines of Code Time (min) Lines of Code % faster % less code x faster x less code
Setup/Preparation 21 0 246 365 91% 100% 11.71
Module Development 12 0 1,518 1,378 99% 100% 126.50
Additional/Solution Development 10 93 10 7 0% -1229% 1.00 0.08
Totals 43 93 1,764 1,743 98% 95% 41.02 18.74
Totals (time in hours) 0.72 29.40

combined development*
APEX

JavaScript Framework
(ReactJS) APEX vs. JavaScript Framework

Time (min) Lines of Code Time (min) Lines of Code % faster % less code x faster x less code
Setup/Preparation 21 0 246 365 91% 100% 11.71
Module Development - FS 12 0 1,518 1,378 99% 100% 126.50
Module Development - IG 14 0 1,373 1,592 99% 100% 98.07
Additional/Solution Development 10 93 10 7 0% -1229% 1.00 0.08
Totals 57 93 3,147 3,342 98% 97% 55.21 35.94
Totals (time in hours) 0.95 52.45

*If both modules would have been built in a single cycle.

© 2020 Pique Solutions. All rights reserved.
28

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix G. Oracle APEX Interactive Grid User Interface

© 2020 Pique Solutions. All rights reserved.
29

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix H. Oracle APEX Faceted Search User Interface

© 2020 Pique Solutions. All rights reserved.
30

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix I. ReactJS Interactive Grid User Interface

© 2020 Pique Solutions. All rights reserved.
31

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix J. ReactJS Faceted Search User Interface

© 2020 Pique Solutions. All rights reserved.
32

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix K. Application, Grid, Header, and Row Menus

© 2020 Pique Solutions. All rights reserved.
33

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix L. Login Modal Dialog

© 2020 Pique Solutions. All rights reserved.
34

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix M. Help Modal Dialog

© 2020 Pique Solutions. All rights reserved.
35

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix N. Difference in Time for Oracle APEX Example Applications

M
in

ut
es

45.5

45

44.5

44

43.5

43

42.5

42
faceted search interactive grid

© 2020 Pique Solutions. All rights reserved.
36

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix O. Difference in Time for ReactJS Example Applications

 2,000

-

200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800
M

in
ut

es

faceted search interactive grid

© 2020 Pique Solutions. All rights reserved.
37

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix P. Combined Difference in Time between APEX and ReactJS Example Applications

3500
3,137

57
0

500

1000

1500

2000

2500

3000

M
in

ut
es

Oracle APEX ReactJS

© 2020 Pique Solutions. All rights reserved.
38

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix Q. Difference in Lines of Code for ReactJS Example Applications

 2,500

-

500

 1,000

 1,500

 2,000
Lin

es
 o

f C
od

e

faceted search interactive grid

© 2020 Pique Solutions. All rights reserved.
39

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix R. Excerpt of code from Interactive Grid on ReactJS

import React, {Component} from 'react';

import MenuBar from './MenuBar.js';
import './App.scss';
import { AgGridReact } from 'ag-grid-react';
// import './ag-grid-enterprise.min';
// import 'ag-grid-community/dist/styles/ag-grid.css';
// import 'ag-grid-community/dist/styles/ag-theme-alpine.css';
import 'ag-grid-enterprise';
import { ModuleRegistry, AllModules } from '@ag-grid-enterprise/all-
modules';
import {Button} from "reactstrap";
import {Dropdown} from "react-bootstrap";
import ModalHelp from "./functions/ModalHelp";
import ModalSecurity from "./functions/ModalSecurity";
import ModalHighlight from "./functions/ModalHighlight";
import ModalFill from "./functions/ModalFill";
import ModalSingleRowView from "./functions/ModalSingleRowView";
import fontawesome from '@fortawesome/fontawesome'
import faFreeSolid from '@fortawesome/fontawesome-free-solid'

ModuleRegistry.registerModules(AllModules);

const host = 'localhost';
const api_port = 30001;
// const host = 'np-api.default.svc.cluster.local';
// const api_port = 3001;
console.log(`host:port = ${host}:${api_port}`);

class App extends Component {

constructor(props) {
super(props);
this.getContextMenuItems = this.getContextMenuItems.bind(this);
this.toggleModalHelp = this.toggleModalHelp.bind(this);
this.toggleModalSecurity = this.toggleModalSecurity.bind(this);
this.toggleModalHighlight =

this.toggleModalHighlight.bind(this);
this.toggleModalSingleRowView =

this.toggleModalSingleRowView.bind(this);
this.toggleModalFill = this.toggleModalFill.bind(this);
this.state = {

searchStr: '',
stretch: false,
sort: true,
username: '',
password: '',
isModalSingleRowViewOpen: false,
isModalHelpOpen: false,
isModalSecurityOpen: false,

© 2020 Pique Solutions. All rights reserved.
40

https://MenuBar.js

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

isModalHighlightOpen: false,
isModalFillOpen: false,
showColumnPanel: true,
showFilterPanel: false,
showPivotPanel: false,
modalContent: "hello world",
modalTitle: "",
cellSelection: true,
cellSelectionText: "Cell Selection",
dirtyRecords: [],
dirtySave: false,
highlightRecords: [{column: "title", text: "Four Rooms",

operator: "==", color: "red", backgroundcolor: "yellow"},{column:
"title", text: "Star Wars", operator: "==", color: "blue",
backgroundcolor: "yellow"},{column: "runtime", text: "140", operator:
">=", color: "pink", backgroundcolor: "yellow"}],

highlightPolicy: [],
highlightPolicy2: { 'rag-back-green rag-fore-white':

'data.title == "Four Rooms"', 'rag-fore-red rag-back-purple':
'data.title == "Star Wars"'},

columnDefs: [{
headerName: "ID", editable: false, filter:

'agNumberColumnFilter', width: 100, field: "id", sortable: true,
checkboxSelection: function(params) {

return true;
}, resizable: true, enablePivot: true, enableRowGroup:

true,
}, {

headerName: "Title", editable: true, field: "title",
sortable: true, filter: true, resizable: true, enableRowGroup: true,
enablePivot: true,

}, {
headerName: "Homepage", editable: true, field:

"homepage", sortable: true, filter: true, resizable: true,
enableRowGroup: true, enablePivot: true,

}, {
headerName: "Language", editable: true, width: 120,

field: "original_language", sortable: true, filter: true, resizable:
true, enableRowGroup: true, enablePivot: true,

}, {
headerName: "Overview", editable: true, field:

"overview", sortable: true, filter: true, resizable: true,
enableRowGroup: true, enablePivot: true,

}, {
headerName: "Popularity", filter:

'agNumberColumnFilter', editable: true, width: 120, field:
"popularity", sortable: true, resizable: true, enableValue: true,
enableRowGroup: true, enablePivot: true,

}, {
headerName: "Release Date", editable: true, field:

"release_date", sortable: true, filter: true, resizable: true,
enableRowGroup: true, enablePivot: true,

}, {

© 2020 Pique Solutions. All rights reserved.
41

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

headerName: "Revenue", editable: true, width: 140,
field: "revenue", sortable: true, filter: 'agNumberColumnFilter',
resizable: true, enableValue: true, enableRowGroup: true, enablePivot:
true,

}, {
headerName: "Runtime", editable: true, width: 120,

field: "runtime", sortable: true, filter: 'agNumberColumnFilter',
resizable: true, enableValue: true, enableRowGroup: true, enablePivot:
true,

}, {
headerName: "Status", editable: true, width: 120,

field: "status", sortable: true, filter: true, resizable: true,
enableRowGroup: true, enablePivot: true,

}, {
headerName: "Tagline", editable: true, field:

"tagline", sortable: true, filter: true, resizable: true,
enableRowGroup: true, enablePivot: true,

}, {
headerName: "Budget", editable: true, width: 120,

field: "budget", sortable: true, filter: 'agNumberColumnFilter',
resizable: true, enableValue: true, enableRowGroup: true, enablePivot:
true,

}, {
headerName: "Vote Average", editable: true, width: 140,

field: "vote_average", sortable: true, filter: 'agNumberColumnFilter',
resizable: true, enableValue: true, enableRowGroup: true, enablePivot:
true,

}, {
headerName: "Vote Count", editable: true, width: 140,

field: "vote_count", sortable: true, filter: 'agNumberColumnFilter',
resizable: true, enableValue: true, enableRowGroup: true, enablePivot:
true,

}],
}

}

getContextMenuItems(params) {
const obj = this;
var result = [

{
name: 'Single Row View',
action: function() {

var rowData = JSON.stringify(params.node.data);
console.log('Single Row Selected: ' + rowData);
obj.setState({modalTitle : "Single Row Details"});
obj.setState({modalContent : rowData});
obj.toggleModalSingleRowView();

},
icon: '',

},
'separator',
{

name: 'Add Row',
action: function() {

© 2020 Pique Solutions. All rights reserved.
42

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

console.log('Add Row Selected');
obj.actionAddRow();

},
icon: '',

},
{

name: 'Duplicate Row',
action: function() {

console.log('Duplicate Row Selected');
obj.actionDuplicateRow(params.node.data);

},
icon: '',

},
'separator',
{

name: 'Delete Row',
action: function() {

console.log('Delete Row Selected');
obj.actionDeleteRow();

},
icon: '',

},
'separator',
{

name: 'Refresh Row',
action: function() {

console.log('Refresh Row Selected');
obj.actionRefresh();

},
icon: '',

},
{

name: 'Revert Changes',
disable: true,
action: function() {

console.log('Revert Changes Selected');
obj.actionFlashback();

},
icon: '',

},
'separator',
'copy',
'separator',
'chartRange',

];

return result;
}

toggleSave(position) {
this.setState({dirtySave : position});

};

toggleModalHelp() {

© 2020 Pique Solutions. All rights reserved.
43

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

this.setState({ isModalHelpOpen: !this.state.isModalHelpOpen
});

}
toggleModalSecurity() {

this.setState({ isModalSecurityOpen:
!this.state.isModalSecurityOpen });

}
toggleModalHighlight() {

this.setState({ isModalHighlightOpen:
!this.state.isModalHighlightOpen });

}
toggleModalFill() {

this.setState({ isModalFillOpen: !this.state.isModalFillOpen
});

}
toggleModalSingleRowView() {

this.setState({ isModalSingleRowViewOpen:
!this.state.isModalSingleRowViewOpen });

}

// onButtonClick = e => {
// this.gridApi.sizeColumnsToFit();
// const selectedNodes = this.gridApi.getSelectedNodes();
// const selectedData = selectedNodes.map(node => node.data);
// const selectedDataStringPresentation = selectedData.map(

node => node.title + ' ' + node.revenue).join(', ')
// alert(`Selected nodes: ${selectedDataStringPresentation}`)
// };

onLogin(username,password) {
this.toggleModalSecurity();
this.setState({username : username});
this.setState({password : password});
this.createHighlightPolicy();
// setTimeout(() => {
this.fetchData();
// }, 1000);

}

fetchData(){
fetch(`http://${host}:${api_port}`)

.then(result => result.json())

.then(rowData => this.setState({rowData}))

.catch(err => console.error(err));
}

onFilterChanged(event) {
this.setState({searchStr : event.target.value})

}
actionGo() {

this.refs.agGrid.api.setQuickFilter(this.state.searchStr);
}
actionEdit() {

© 2020 Pique Solutions. All rights reserved.
44

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

console.log('action: "edit" attempted');
const focusedCell =

this.refs.agGrid.gridOptions.api.getFocusedCell();
this.refs.agGrid.gridOptions.api.startEditingCell({

rowIndex: focusedCell.rowIndex,
colKey: focusedCell.column,

});
}
actionCheckBox() {

return this.state.cellSelection;
}
actionToggleCellSelection() {

if (this.state.cellSelection === true) {
console.log('action: "toggle cell/row selection: row"

attempted');
// this.columnApi.checkboxSelection(false);
this.setState({cellSelection: false});
this.setState({cellSelectionText: "Row Selection"});

} else {
console.log('action: "toggle cell/row selection: cell"

attempted');
//

this.refs.agGrid.gridOptions.suppressCellSelection=false;
this.setState({cellSelection: true});
this.setState({cellSelectionText: "Cell Selection"});

}
}
actionCopyDown() {

console.log('action: "copy down" attempted');
}

actionFill() {
console.log('action: "fill" attempted');
this.setState({modalTitle : "Fill Selection"});
this.setState({modalContent : "Fill selection with"});
this.toggleModalFill();

}
actionExecuteFill(fillStr) {

console.log('action: "execute fill" attempted: ' + fillStr);
this.toggleModalFill();
const focusedCell =

this.refs.agGrid.gridOptions.api.getFocusedCell();
var rowNode =

this.refs.agGrid.gridOptions.api.getRowNode(focusedCell.rowIndex);
rowNode.setDataValue(focusedCell.column, fillStr);

}

actionClear(){
console.log('action: "clear" attempted');
const selectedNodes = this.gridApi.getSelectedNodes();
const selectedData = selectedNodes.map(node => node.rowIndex

);
for (let rowIndex of selectedData) {

© 2020 Pique Solutions. All rights reserved.
45

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

this.refs.agGrid.gridOptions.rowData.fill(rowIndex-
1,rowIndex,rowIndex+1);

this.gridApi.setRowData(this.refs.agGrid.gridOptions.rowData);
}

}
actionColumns() {

if (this.state.showColumnPanel === false) {
console.log('action: "columns - true" attempted');
this.refs.agGrid.api.setSideBar('columns');
this.refs.agGrid.api.openToolPanel('columns');
this.setState({showFilterPanel: false});
this.setState({showColumnPanel: true});

} else {
console.log('action: "columns - false" attempted');
this.setState({showColumnPanel: false});

}
}
actionFilter() {

if (this.state.showFilterPanel === false) {
console.log('action: "filter - true" attempted');
this.refs.agGrid.api.setSideBar('filters');
this.refs.agGrid.api.openToolPanel('filters');
this.setState({showColumnPanel: false});
this.setState({showFilterPanel: true});

} else {
console.log('action: "filter - false" attempted');
this.setState({showFilterPanel: false});

}
}
actionSort() {

var sort =[];
if (this.state.sort === true) {

console.log('action: "data:sort - false" attempted');
this.setState({sort: false});
sort = [

{ colId: 'title', sort: 'asc' }
];
this.refs.agGrid.api.setSortModel(sort);

} else {
console.log('action: "data:sort - true" attempted');
this.setState({sort: true});
sort = [

{ colId: 'id', sort: 'asc' }
];
this.refs.agGrid.api.setSortModel(sort);

}
}
actionAggregate() {

if (this.state.showColumnPanel === false) {
console.log('action: "data:aggregate - true" attempted');
this.refs.agGrid.api.setSideBar('columns');
this.refs.agGrid.api.openToolPanel('columns');
this.setState({showFilterPanel: false});

© 2020 Pique Solutions. All rights reserved.
46

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

this.setState({showColumnPanel: true});
} else {

console.log('action: "data:aggregate - false" attempted');
this.setState({showColumnPanel: false});

}
}
actionRefresh() {

console.log('action: "data:refresh" attempted');
var params = {

force: true,
suppressFlash: false,

};
this.refs.agGrid.api.refreshCells(params);

}
actionFlashback() {

console.log('action: "data:flashback" attempted');
this.gridApi.undoCellEditing();

}
actionFlashbacks() {

console.log('action: "data:flashback" attempted');
const selectedNodes = this.gridApi.getSelectedNodes();
const selectedData = selectedNodes.map(node => node.data);
for (let rowData of selectedData) {

this.gridApi.undoCellEditing();
}

}

actionControlBreak() {
if (this.state.showColumnPanel === false) {

console.log('action: "columns - true" attempted');
this.refs.agGrid.api.setSideBar('columns');
this.refs.agGrid.api.openToolPanel('columns');
this.setState({showFilterPanel: false});
this.setState({showColumnPanel: true});

} else {
console.log('action: "columns - false" attempted');
this.setState({showColumnPanel: false});

}
}
actionStretchColumn() {

if (this.state.stretch === true) {
console.log('action: "format:stretchcolumn - false"

attempted');
this.setState({stretch: false});
this.refs.agGrid.api.sizeColumnsToFit();

} else {
console.log('action: "format:stretchcolumn - true"

attempted');
this.setState({stretch: true});
this.refs.agGrid.columnApi.autoSizeColumns([

© 2020 Pique Solutions. All rights reserved.
47

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

Appendix S. Excerpt of code from Interactive Grid on APEX

function (config)
{

//No selected any row when the page is rendered
config.initialSelection = false;
//Begin - Creating two buttons, Inactivate and Activate
var $ = apex.jQuery,

toolbarData = $.apex.interactiveGrid.copyDefaultToolbar(),
toolbarGroup = toolbarData.toolbarFind("actions3");

toolbarGroup.controls.push(
{

type: "BUTTON",
action: "activate",
icon: "fa fa-thumbs-up fam-check fam-is-success",
iconBeforeLabel: true,
hot: true,

});
toolbarGroup.controls.push(
{

type: "BUTTON",
action: "inactivate",
icon: "fa fa-thumbs-down fam-x fam-is-danger",
iconBeforeLabel: true,
hot: true,

});
config.toolbarData = toolbarData;
//End - Creating two buttons, Inactivate and Activate
config.initActions = function (actions)
{

// Defining the action for activate button
actions.add(
{

name: "activate",
label: "Activate",
action: activate

});
// Defining the action for inactivate button
actions.add(
{

name: "inactivate",
label: "Inactivate",
action: inactivate

});
}

function activate(event, focusElement)
{

var i, records, model, record,
view =

apex.region("ig_emp").widget().interactiveGrid("getCurrentView");

if (view.supports.edit)
{

© 2020 Pique Solutions. All rights reserved.
48

Oracle APEX vs. Traditional Development Approaches: A Time and Motion Analysis

model = view.model;
records = view.getSelectedRecords();
if (records.length > 0)
{

for (i = 0; i < records.length; i++)
{

record = records[i];
//Set the value for the checked rows to A (Activate)
model.setValue(record, "STATUS", 'A');

}
//Save the changes

apex.region("ig_emp").widget().interactiveGrid("getActions").invoke("save")
;

}
}

}

function inactivate(event, focusElement)
{

var i, records, model, record,
view =

apex.region("ig_emp").widget().interactiveGrid("getCurrentView");

if (view.supports.edit)
{

model = view.model;
records = view.getSelectedRecords();
if (records.length > 0)
{

for (i = 0; i < records.length; i++)
{

record = records[i];
//Set the value for the checked rows to I (Inactivate)
model.setValue(record, "STATUS", 'I');

}
//Save the changes

apex.region("ig_emp").widget().interactiveGrid("getActions").invoke("save")
;

}
}

}
return config;

}

© 2020 Pique Solutions. All rights reserved.
49

